Spherical_Harmonics
https://en.wikipedia.org/wiki/Spherical_harmonics
Spherical harmonics were first investigated in connection with the Newtonian potential of Newton's law of universal gravitation in three dimensions. In 1782, Pierre-Simon de Laplace had, in his Mécanique Céleste, determined that the gravitational potential at a point x associated with a set of point masses mi located at points xi was given by
Each term in the above summation is an individual Newtonian potential for a point mass. Just prior to that time, Adrien-Marie Legendre had investigated the expansion of the Newtonian potential in powers of r = |x| and r1 = |x1|. He discovered that if r ≤ r1 then
where γ is the angle between the vectors x and x1. The functions are the Legendre polynomials, and they can be derived as a special case of spherical harmonics. Subsequently, in his 1782 memoir, Laplace investigated these coefficients using spherical coordinates to represent the angle γ between x1 and x. (See Applications of Legendre polynomials in physics for a more detailed analysis.)
In 1867, William Thomson (Lord Kelvin) and Peter Guthrie Tait introduced the solid spherical harmonics in their Treatise on Natural Philosophy, and also first introduced the name of "spherical harmonics" for these functions. The solid harmonics were homogeneous polynomial solutions of Laplace's equation
By examining Laplace's equation in spherical coordinates, Thomson and Tait recovered Laplace's spherical harmonics. (See the section below, "Harmonic polynomial representation".) The term "Laplace's coefficients" was employed by William Whewell to describe the particular system of solutions introduced along these lines, whereas others reserved this designation for the zonal spherical harmonics that had properly been introduced by Laplace and Legendre.
The 19th century development of Fourier series made possible the solution of a wide variety of physical problems in rectangular domains, such as the solution of the heat equation and wave equation. This could be achieved by expansion of functions in series of trigonometric functions. Whereas the trigonometric functions in a Fourier series represent the fundamental modes of vibration in a string, the spherical harmonics represent the fundamental modes of vibration of a sphere in much the same way. Many aspects of the theory of Fourier series could be generalized by taking expansions in spherical harmonics rather than trigonometric functions. Moreover, analogous to how trigonometric functions can equivalently be written as complex exponentials, spherical harmonics also possessed an equivalent form as complex-valued functions. This was a boon for problems possessing spherical symmetry, such as those of celestial mechanics originally studied by Laplace and Legendre.
The prevalence of spherical harmonics already in physics set the stage for their later importance in the 20th century birth of quantum mechanics. The (complex-valued) spherical harmonics are eigenfunctions of the square of the orbital angular momentum operator
and therefore they represent the different quantized configurations of atomic orbitals.
Laplace's spherical harmonics[edit]
Laplace's equation imposes that the Laplacian of a scalar field f is zero. (Here the scalar field is understood to be complex, i.e. to correspond to a (smooth) function .) In spherical coordinates this is:[2]
Consider the problem of finding solutions of the form f(r, θ, φ) = R(r) Y(θ, φ). By separation of variables, two differential equations result by imposing Laplace's equation:
The second equation can be simplified under the assumption that Y has the form Y(θ, φ) = Θ(θ) Φ(φ). Applying separation of variables again to the second equation gives way to the pair of differential equations
for some number m. A priori, m is a complex constant, but because Φ must be a periodic function whose period evenly divides 2π, m is necessarily an integer and Φ is a linear combination of the complex exponentials e± imφ. The solution function Y(θ, φ) is regular at the poles of the sphere, where θ = 0, π. Imposing this regularity in the solution Θ of the second equation at the boundary points of the domain is a Sturm–Liouville problem that forces the parameter λ to be of the form λ = ℓ (ℓ + 1) for some non-negative integer with ℓ ≥ |m|; this is also explained below in terms of the orbital angular momentum. Furthermore, a change of variables t = cos θ transforms this equation into the Legendre equation, whose solution is a multiple of the associated Legendre polynomial Pm
ℓ(cos θ) . Finally, the equation for R has solutions of the form R(r) = A rℓ + B r−ℓ − 1; requiring the solution to be regular throughout R3 forces B = 0.[3]
Here the solution was assumed to have the special form Y(θ, φ) = Θ(θ) Φ(φ). For a given value of ℓ, there are 2ℓ + 1 independent solutions of this form, one for each integer m with −ℓ ≤ m ≤ ℓ. These angular solutions are a product of trigonometric functions, here represented as a complex exponential, and associated Legendre polynomials:
which fulfill
Here is called a spherical harmonic function of degree ℓ and order m, is an associated Legendre polynomial, N is a normalization constant, and θ and φ represent colatitude and longitude, respectively. In particular, the colatitude θ, or polar angle, ranges from 0 at the North Pole, to π/2 at the Equator, to π at the South Pole, and the longitude φ, or azimuth, may assume all values with 0 ≤ φ < 2π. For a fixed integer ℓ, every solution Y(θ, φ), , of the eigenvalue problem
is a linear combination of . In fact, for any such solution, rℓ Y(θ, φ) is the expression in spherical coordinates of a homogeneous polynomial that is harmonic (see below), and so counting dimensions shows that there are 2ℓ + 1 linearly independent such polynomials.
The general solution to Laplace's equation in a ball centered at the origin is a linear combination of the spherical harmonic functions multiplied by the appropriate scale factor rℓ,
where the are constants and the factors rℓ Yℓm are known as (regular) solid harmonics . Such an expansion is valid in the ball
For , the solid harmonics with negative powers of (the irregular solid harmonics ) are chosen instead. In that case, one needs to expand the solution of known regions in Laurent series (about ), instead of the Taylor series (about ) used above, to match the terms and find series expansion coefficients .
Orbital angular momentum[edit]
In quantum mechanics, Laplace's spherical harmonics are understood in terms of the orbital angular momentum[4]
The ħ is conventional in quantum mechanics; it is convenient to work in units in which ħ = 1. The spherical harmonics are eigenfunctions of the square of the orbital angular momentum
Laplace's spherical harmonics are the joint eigenfunctions of the square of the orbital angular momentum and the generator of rotations about the azimuthal axis:
These operators commute, and are densely defined self-adjoint operators on the weighted Hilbert space of functions f square-integrable with respect to the normal distribution as the weight function on R3:
Furthermore, L2 is a positive operator.
If Y is a joint eigenfunction of L2 and Lz, then by definition
for some real numbers m and λ. Here m must in fact be an integer, for Y must be periodic in the coordinate φ with period a number that evenly divides 2π. Furthermore, since
and each of Lx, Ly, Lz are self-adjoint, it follows that λ ≥ m2.
Denote this joint eigenspace by Eλ,m, and define the raising and lowering operators by
Then L+ and L− commute with L2, and the Lie algebra generated by L+, L−, Lz is the special linear Lie algebra of order 2, , with commutation relations
Thus L+ : Eλ,m → Eλ,m+1 (it is a "raising operator") and L− : Eλ,m → Eλ,m−1 (it is a "lowering operator"). In particular, Lk
+ : Eλ,m → Eλ,m+k must be zero for k sufficiently large, because the inequality λ ≥ m2 must hold in each of the nontrivial joint eigenspaces. Let Y ∈ Eλ,m be a nonzero joint eigenfunction, and let k be the least integer such that
Then, since
it follows that
Thus λ = ℓ(ℓ + 1) for the positive integer ℓ = m + k.
The foregoing has been all worked out in the spherical coordinate representation, but may be expressed more abstractly in the complete, orthonormal spherical ket basis.
Harmonic polynomial representation[edit]
The spherical harmonics can be expressed as the restriction to the unit sphere of certain polynomial functions . Specifically, we say that a (complex-valued) polynomial function is homogeneous of degree if
for all real numbers and all . We say that is harmonic if
where is the Laplacian. Then for each , we define
For example, when , is just the 3-dimensional space of all linear functions , since any such function is automatically harmonic. Meanwhile, when , we have a 5-dimensional space:
For any , the space of spherical harmonics of degree is just the space of restrictions to the sphere of the elements of .[5] As suggested in the introduction, this perspective is presumably the origin of the term "spherical harmonic" (i.e., the restriction to the sphere of a harmonic function).
For example, for any the formula
defines a homogeneous polynomial of degree with domain and codomain , which happens to be independent of . This polynomial is easily seen to be harmonic. If we write in spherical coordinates and then restrict to , we obtain
which can be rewritten as
After using the formula for the associated Legendre polynomial , we may recognize this as the formula for the spherical harmonic [6] (See the section below on special cases of the spherical harmonics.)
Conventions[edit]
Orthogonality and normalization[edit]
![]() | This section's factual accuracy is disputed. (December 2017) |
Several different normalizations are in common use for the Laplace spherical harmonic functions . Throughout the section, we use the standard convention that for (see associated Legendre polynomials)
which is the natural normalization given by Rodrigues' formula.
In acoustics,[7] the Laplace spherical harmonics are generally defined as (this is the convention used in this article)
while in quantum mechanics:[8][9]
where are associated Legendre polynomials without the Condon–Shortley phase (to avoid counting the phase twice).
In both definitions, the spherical harmonics are orthonormal
where δij is the Kronecker delta and dΩ = sin(θ) dφ dθ. This normalization is used in quantum mechanics because it ensures that probability is normalized, i.e.,
The disciplines of geodesy[10] and spectral analysis use
which possess unit power
The magnetics[10] community, in contrast, uses Schmidt semi-normalized harmonics
which have the normalization
In quantum mechanics this normalization is sometimes used as well, and is named Racah's normalization after Giulio Racah.
It can be shown that all of the above normalized spherical harmonic functions satisfy
where the superscript * denotes complex conjugation. Alternatively, this equation follows from the relation of the spherical harmonic functions with the Wigner D-matrix.
Condon–Shortley phase[edit]
One source of confusion with the definition of the spherical harmonic functions concerns a phase factor of (−1)m, commonly referred to as the Condon–Shortley phase in the quantum mechanical literature. In the quantum mechanics community, it is common practice to either include this phase factor in the definition of the associated Legendre polynomials, or to append it to the definition of the spherical harmonic functions. There is no requirement to use the Condon–Shortley phase in the definition of the spherical harmonic functions, but including it can simplify some quantum mechanical operations, especially the application of raising and lowering operators. The geodesy[11] and magnetics communities never include the Condon–Shortley phase factor in their definitions of the spherical harmonic functions nor in the ones of the associated Legendre polynomials.[citation needed]
Real form[edit]
A real basis of spherical harmonics can be defined in terms of their complex analogues by setting
The Condon–Shortley phase convention is used here for consistency. The corresponding inverse equations defining the complex spherical harmonics in terms of the real spherical harmonics are
The real spherical harmonics are sometimes known as tesseral spherical harmonics.[12] These functions have the same orthonormality properties as the complex ones above. The real spherical harmonics with m > 0 are said to be of cosine type, and those with m < 0 of sine type. The reason for this can be seen by writing the functions in terms of the Legendre polynomials as
The same sine and cosine factors can be also seen in the following subsection that deals with the Cartesian representation.
See here for a list of real spherical harmonics up to and including , which can be seen to be consistent with the output of the equations above.
Use in quantum chemistry[edit]
As is known from the analytic solutions for the hydrogen atom, the eigenfunctions of the angular part of the wave function are spherical harmonics. However, the solutions of the non-relativistic Schrödinger equation without magnetic terms can be made real. This is why the real forms are extensively used in basis functions for quantum chemistry, as the programs don't then need to use complex algebra. Here, it is important to note that the real functions span the same space as the complex ones would.
For example, as can be seen from the table of spherical harmonics, the usual p functions () are complex and mix axis directions, but the real versions are essentially just x, y, and z.
Spherical harmonics in Cartesian form[edit]
The complex spherical harmonics give rise to the solid harmonics by extending from to all of as a homogeneous function of degree , i.e. setting
It turns out that is basis of the space of harmonic and homogeneous polynomials of degree . More specifically, it is the (unique up to normalization) Gelfand-Tsetlin-basis of this representation of the rotational group and an explicit formula for in cartesian coordinates can be derived from that fact.
The Herglotz generating function[edit]
If the quantum mechanical convention is adopted for the , then
Here, is the vector with components , , and
is a vector with complex coefficients. It suffices to take and as real parameters. The essential property of is that it is null:
In naming this generating function after Herglotz, we follow Courant & Hilbert 1962, §VII.7, who credit unpublished notes by him for its discovery.
Essentially all the properties of the spherical harmonics can be derived from this generating function.[13] An immediate benefit of this definition is that if the vector is replaced by the quantum mechanical spin vector operator , such that is the operator analogue of the solid harmonic ,[14] one obtains a generating function for a standardized set of spherical tensor operators, :
The parallelism of the two definitions ensures that the 's transform under rotations (see below) in the same way as the 's, which in turn guarantees that they are spherical tensor operators, , with and , obeying all the properties of such operators, such as the Clebsch-Gordan composition theorem, and the Wigner-Eckart theorem. They are, moreover, a standardized set with a fixed scale or normalization.
Separated Cartesian form[edit]
The Herglotzian definition yields polynomials which may, if one wishes, be further factorized into a polynomial of and another of and , as follows (Condon–Shortley phase):
and for m = 0:
Here
and
For this reduces to
The factor is essentially the associated Legendre polynomial , and the factors are essentially .
Examples[edit]
Using the expressions for , , and listed explicitly above we obtain:
It may be verified that this agrees with the function listed here and here.
Real forms[edit]
Using the equations above to form the real spherical harmonics, it is seen that for only the terms (cosines) are included, and for only the terms (sines) are included:
and for m = 0:
Special cases and values[edit]
- When , the spherical harmonics reduce to the ordinary Legendre polynomials:
- When ,or more simply in Cartesian coordinates,
- At the north pole, where , and is undefined, all spherical harmonics except those with vanish:
Symmetry properties[edit]
The spherical harmonics have deep and consequential properties under the operations of spatial inversion (parity) and rotation.
Parity[edit]
The spherical harmonics have definite parity. That is, they are either even or odd with respect to inversion about the origin. Inversion is represented by the operator . Then, as can be seen in many ways (perhaps most simply from the Herglotz generating function), with being a unit vector,
In terms of the spherical angles, parity transforms a point with coordinates to . The statement of the parity of spherical harmonics is then
(This can be seen as follows: The associated Legendre polynomials gives (−1)ℓ+m and from the exponential function we have (−1)m, giving together for the spherical harmonics a parity of (−1)ℓ.)
Parity continues to hold for real spherical harmonics, and for spherical harmonics in higher dimensions: applying a point reflection to a spherical harmonic of degree ℓ changes the sign by a factor of (−1)ℓ.
Rotations[edit]
Consider a rotation about the origin that sends the unit vector to . Under this operation, a spherical harmonic of degree and order transforms into a linear combination of spherical harmonics of the same degree. That is,
where is a matrix of order that depends on the rotation . However, this is not the standard way of expressing this property. In the standard way one writes,
where is the complex conjugate of an element of the Wigner D-matrix. In particular when is a rotation of the azimuth we get the identity,
The rotational behavior of the spherical harmonics is perhaps their quintessential feature from the viewpoint of group theory. The 's of degree provide a basis set of functions for the irreducible representation of the group SO(3) of dimension . Many facts about spherical harmonics (such as the addition theorem) that are proved laboriously using the methods of analysis acquire simpler proofs and deeper significance using the methods of symmetry.
Spherical harmonics expansion[edit]
The Laplace spherical harmonics form a complete set of orthonormal functions and thus form an orthonormal basis of the Hilbert space of square-integrable functions . On the unit sphere , any square-integrable function can thus be expanded as a linear combination of these:
This expansion holds in the sense of mean-square convergence — convergence in L2 of the sphere — which is to say that
The expansion coefficients are the analogs of Fourier coefficients, and can be obtained by multiplying the above equation by the complex conjugate of a spherical harmonic, integrating over the solid angle Ω, and utilizing the above orthogonality relationships. This is justified rigorously by basic Hilbert space theory. For the case of orthonormalized harmonics, this gives:
If the coefficients decay in ℓ sufficiently rapidly — for instance, exponentially — then the series also converges uniformly to f.
A square-integrable function can also be expanded in terms of the real harmonics above as a sum
The convergence of the series holds again in the same sense, namely the real spherical harmonics form a complete set of orthonormal functions and thus form an orthonormal basis of the Hilbert space of square-integrable functions . The benefit of the expansion in terms of the real harmonic functions is that for real functions the expansion coefficients are guaranteed to be real, whereas their coefficients in their expansion in terms of the (considering them as functions ) do not have that property.
Harmonic tensors[edit]
Formula[edit]
As a rule, harmonic functions are useful in theoretical physics to consider fields in the far field when the distance from charges is much farther than the size of their location. In this case, the radius R is constant and coordinates (θ,φ) are convenient to use. Theoretical physics considers many problems when a solution of Laplace's equation is needed as a function of Сartesian coordinates. At the same time, it is important to get an invariant form of solutions relative to the rotation of space or, generally speaking, relative to group transformations.[15][16][17][18] The simplest tensor solutions – dipole, quadrupole and octupole potentials – are fundamental concepts of general physics:
It is easy to verify that they are the harmonic functions. The total set of tensors is defined by the Taylor series of a point charge field potential for :
where tensor is denoted by symbol and contraction of the tensors is in the brackets [...]. Therefore, the tensor is defined by the -th tensor derivative:
James Clerk Maxwell used similar considerations without tensors naturally.[19] E. W. Hobson analysed Maxwell's method as well.[20] One can see from the equation the following properties that repeat mainly those of solid and spherical functions.
- The tensor is the harmonic polynomial i. e. .
- The trace over each pair of indices is zero, as far as .
- The tensor is a homogeneous polynomial of degree i.e. summed degree of variables x, y, z of each item is equal to .
- The tensor has invariant form under rotations of variables x,y,z i.e. of vector .
- The total set of potentials is complete.
- Contraction of with a tensor is proportional to contraction of two harmonic potentials:
The formula for a harmonic invariant tensor was found in paper.[21] A detailed description is given in the monograph.[22] 4-D harmonic tensors are important in Fock symmetry found in quantum the Coulomb problem.[23] The formula contains products of tensors and Kronecker symbols :
The number of Kronecker symbols is increased by two in the product of each following item when the range of tensors is reduced by two accordingly. The operation symmetrizes a tensor by means of summing all independent permutations of indices. Particularly, each does not need to be transformed into and tensors do not become .
These tensors are convenient to substitute into Laplace's equation:
The last relation is Euler's formula for homogeneous polynomials. The Laplace operator does not affect the index symmetry of tensors. The two relations allow substitution of a tensor into Laplace's equation to check directly that the tensor is a harmonic function:
Simplified moments[edit]
The last property is important for theoretical physics for the following reason. Potential of charges outside of their location is integral to be equal to the sum of multipole potentials:
where is the charge density. The convolution is applied to tensors in the formula naturally. Integrals in the sum are called multipole moments in physics. Three of them are used actively while others are applied less often as their structure (or that of spherical functions) is more complicated. Nevertheless, the last property gives the way to simplify calculations in theoretical physics by using integrals with tensor instead of harmonic tensor . Therefore, simplified moments give the same result and there is no need to restrict calculations for dipole, quadrupole and octupole potentials only. It is the advantage of the tensor point of view and not the only that.
Efimov's ladder operator[edit]
Spherical functions have a few recurrent formulas.[24] In quantum mechanics recurrent formulas plays a role when they connect functions of quantum states by means of a ladder operator. The property is occurred due to symmetry group of considered system. The vector ladder operator for the invariant harmonic states found in paper[21] and detailed in.[22]
- For that purpose, transformation of -space is applied that conserves form of Laplace equation:
Operator applying to the harmonic tensor potential in -space goes into Efimov's ladder operator acting on transformed tensor in -space:
where is operator of module of angular momentum:
Operator multiplies harmonic tensor by its degree i.e. by if to recall according spherical function for quantum numbers , . To check action of the ladder operator , one can apply it to dipole and quadrupole tensors:
Applying successively to we get general form of invariant harmonic tensors:
The operator analogous to the oscillator ladder operator. To trace relation with a quantum operator it is useful to multiply it by to go to reversed space:
As a result, operator goes into the operator of momentum in -space:
It is useful to apply the following properties of .
- Commutator of the coordinate operators is zero:
The property is utterly convenient for calculations.
- The scalar operator product is zero in the space of harmonic functions:
The property gives zero trace of the harmonic tensor over each two indices.
The ladder operator is analogous for that in problem of the quantum oscillator. It generates Glauber states those are created in the quantum theory of electromagnetic radiation fields.[25] It was shown later as theoretical result that the coherent states are intrinsic for any quantum system with a group symmetry to include the rotational group.[26]
Invariant form of spherical harmonics[edit]
Spherical harmonics accord with the system of coordinates. Let be the unit vectors along axes X, Y, Z. Denote following unit vectors as and :
Using the vectors, the solid harmonics are equal to:
where is the constant:
Angular momentum is defined by the rotational group. The mechanical momentum is related to the translation group. The ladder operator is the mapping of momentum upon inversion 1/r of 3-d space. It is raising operator. Lowering operator here is the gradient naturally together with partial contraction over pair indices to leave others:
댓글
댓글 쓰기