About Python

https://www.youtube.com/watch?v=C8jeRug6agk

2times slower than java and 4times slower than c++

Python

Python is known for its flexibility, fast performance and highly readable code. Such titans as YouTube, Reddit and Instagram use it for their websites and mobile apps. Believe it or not, but that’s not the main reason for the increased interest in it. Python is seen as the future of machine learning.
Fast learning AI is the thing that all of us want to see. Who in the world would refuse to have personal Jarvis? Python is actually working on that with the help of such libraries as scikit-learn, Keras, and TensorFlow. It is already used in Spotify, Evernote, Booking.com and in many other projects that want to make user experience better and as intuitive as possible.
 

Python

요즘 뜨는 언어답게, 대부분의 라이브러리들이 빠른 속도로 업데이트되며 새로운 기능이 계속 추가되고 있다.
  1. Theano - 수식 및 행렬 연산을 쉽게 만들어주는 파이썬 라이브러리. 딥러닝 알고리즘을 파이썬으로 쉽게 구현할 수 있도록 해주는데, Theano 기반 위에 얹어서 더 사용하기 쉽게 구현된 여러 라이브러리가 있다.
    • Keras - Theano 기반이지만 Torch처럼 모듈화가 잘 되어 있어서 사용하기 쉽고 최근에도 계속 업데이트되며 빠른 속도로 발전하고 있는 라이브러리.
    • Pylearn2 - Theano를 유지, 보수하고 있는 Montreal 대학의 Yoshua Bengio 그룹에서 개발한 Machine Learning 연구용 라이브러리
    • Lasagne - 가볍고 모듈화가 잘 되어 있어서 사용하기 편리함
    • Blocks - 위 라이브러리와 비슷하게 역시 Theano 기반으로 손쉽게 신경망 구조를 구현할 수 있도록 해주는 라이브러리
  2. Chainer - 거의 모든 딥러닝 알고리즘을 직관적인 Python 코드로 구현할 수 있고, 자유도가 매우 높음. 대다수의 다른 라이브러리들과는 다르게 "Define-by-Run" 형태로 구현되어 있어서, forward 함수만 정의해주면 네트워크 구조가 자동으로 정해진다는 점이 특이하다.
  3. nolearn - scikit-learn과 연동되며 기계학습에 유용한 여러 함수를 담고 있음.
  4. Gensim - 큰 스케일의 텍스트 데이터를 효율적으로 다루는 것을 목표로 한 Python 기반 딥러닝 툴킷
  5. deepnet - cudamat과 cuda-convnet 기반의 딥러닝 라이브러리
  6. CXXNET - MShadow 라이브러리 기반으로 멀티 GPU까지 지원하며, Python 및 Matlab 인터페이스 제공
  7. DeepPy - NumPy 기반의 라이브러리
  8. Neon - Nervana에서 사용하는 딥러닝 프레임워크

C++

  1. Caffe - Berkeley 대학에서 관리하고 있고, 현재 가장 많은 사람들이(추정) 사용하고 있는 라이브러리. C++로 직접 사용할 수도 있지만 Python과 Matlab 인터페이스도 잘 구현되어 있다.
  2. DIGITS - NVIDIA에서 브라우저 기반 인터페이스로 쉽게 신경망 구조를 구현, 학습, 시각화할 수 있도록 개발한 시스템.
  3. cuda-convnet - 딥러닝 슈퍼스타인 Alex Krizhevsky와 Geoff Hinton이 ImageNet 2012 챌린지를 우승할 때 사용한 라이브러리
  4. eblearn - 딥러닝 계의 또하나의 큰 축인 NYU의 Yann LeCun 그룹에서 ImageNet 2013 챌린지를 우승할 때 사용한 라이브러리
  5. SINGA - 기존의 시스템에서 동작하는 분산처리 학습 알고리즘을 일반적으로 구현하기 위해 만들어진 플랫폼으로 Apache Software Foundation의 후원을 받고 있다.

.NET

  1. Accord.NET - C#으로만 작성된 .NET 머신러닝 프레임워크로 음성, 이미지 처리 라이브러리가 포함되어 있다. 상용 수준의 컴퓨터 비전, 컴퓨터 음성인식, 신호처리, 통계 어플리케이션을 만들 수 있다.

댓글

이 블로그의 인기 게시물

About AActor!!! "UObject" has no member "BeginPlay"

UNREAL Android build information

C++ 생성자 위임 (delegating constructor)